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Abstract. We propose to apply atom-chip techniques to the trapping of a single atom in a circular Rydberg
state. The small size of microfabricated structures will allow for trap geometries with microwave cut-off
frequencies high enough to inhibit the spontaneous emission of the Rydberg atom, paving the way to
complete control of both external and internal degrees of freedom over very long times. Trapping is achieved
using carefully designed electric fields, created by a simple pattern of electrodes. We show that it is possible
to excite, and then trap, one and only one Rydberg atom from a cloud of ground state atoms confined
on a magnetic atom chip, itself integrated with the Rydberg trap. Distinct internal states of the atom are
simultaneously trapped, providing us with a two-level system extremely attractive for atom-surface and
atom-atom interaction studies. We describe a method for reducing by three orders of magnitude dephasing
due to Stark shifts, induced by the trapping field, of the internal transition frequency. This allows for,
in combination with spin-echo techniques, maintenance of an internal coherence over times in the second
range. This method operates via a controlled light shift rendering the two internal states’ Stark shifts
almost identical. We thoroughly identify and account for sources of imperfection in order to verify at each
step the realism of our proposal.

PACS. 03.65.-w Quantum mechanics – 32.60.+i Zeeman and Stark effects – 42.50.Pq Cavity quantum
electrodynamics; micromasers – 32.80.-t Photon interactions with atoms

1 Introduction

In recent years we have witnessed convergence between
many fields of physics previously considered disparate.
This has been particularly true in the case of solid state
and atomic physics. On one side, the possibility of design-
ing nanometric devices and the understanding of quantum
phenomena in devices such as Josephson junctions has al-
lowed experimentalists to control the quantum coherence
of semi- [1] or super-conducting [2,3] systems, exactly as
was done many years ago for atoms or molecules. On the
other, atomic physicists have been able to produce Bose-
Einstein condensates [4] and degenerate Fermi gases [5] in
quasi ideal situations, wonderful tools for probing many
body theory and mesoscopic physics.

Atom-chip experiments [6,7] open the way to investi-
gations at the frontier of these two fields. Aside from their
relative ease of use and potential as atom interferometers,
they provide an ideal environment in which atomic ensem-
bles can be integrated with, and coupled to, devices on a
microcircuit. Moreover, they allow for the study of atom-
surface interactions with a completely new degree of con-
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trol. Separately, experiments on circular Rydberg atoms
have proven them extremely sensitive probes of electric
and magnetic fields, both static and dynamic, making
ideal tools for the investigation of numerous quantum phe-
nomena, atom-surface interactions included. This remark-
able sensitivity, in conjunction with their relative ease of
detection, makes a single circular Rydberg atom an ex-
cellent probe of microwave field intensities ranging from
one to a few tens of photons [8]. The coupling of a single
such atom to a high Q superconducting microwave cav-
ity has allowed our group to study, for example, the de-
coherence of mesoscopic ensembles of photons [9] and to
realize elementary quantum logic operations [10]. In these
experiments, circular Rydberg atoms are excited from a
thermal atomic beam (mean velocity 350 m/s) crossing
a cryogenic set-up in which the superconducting cavity
is mounted. The use of thermal atoms intrinsically limits
the maximum interaction time between the atom and the
microwave field. Moreover, in order to reduce to a neg-
ligible level the proportion of unwanted events in which
we have more than one circular Rydberg atom present at
once in the cavity, we are forced to work with a very low
rate of excitation towards the Rydberg levels. Aside from
increasing dramatically the acquisition time, this lack of
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a deterministic atom source is an inconvenience from the
point of view of quantum information processing.

The integrated trapping and manipulation of circu-
lar Rydberg atoms on a chip proposed here would lift
these limitations. If we are to take advantage, however, of
the longer interaction times achievable with such trapped
Rydberg atoms, we must also combine in the same set-up
the capability for the extension of the natural lifetime and
long term coherent manipulation. For short term manipu-
lation over times of the order of the millisecond, this being
much shorter than their lifetime in free space, one could
simply excite the Rydberg atoms from an initial sample
of cold trapped atoms and study them in free fall [11]. In
reference [12] we proposed an electric trap able not only
to store an individual circular Rydberg atom, but also to
inhibit its spontaneous emission and maintain an internal
coherence. In this paper we present in much more detail
how we assess the trap’s performance, how to integrate
it on a chip and how we simulate the different imperfec-
tions of the set-up. We not only present the trap geom-
etry of reference [12] but also show that it is possible to
extend the proposal to a smaller design where the atom
is brought closer to the chip surface, a design therefore
better adapted to atom-surface interaction studies. The
principle of the trap, along with its implementations in
realistic geometries, is discussed in Section 2. We show in
Section 3 that the excitation of a sample of ground state
atoms, initially trapped on a magnetic atom chip, can lead
to the preparation of a single Rydberg atom, taking ad-
vantage of the dipole-blockade effect [13]. As explained
above, the maximum duration of an experiment with this
atom is not limited by the storage time but by the life-
time of the circular Rydberg state. We discuss in Section 4
the efficiency of the spontaneous emission inhibition when
we place our atom chip within a structure excluding the
millimetre-wave decay channel. We show that the radia-
tive lifetime could realistically be pushed into the second
range. We present finally in Section 5 a technique taking
advantage of a controlled light shift of the Rydberg levels
allowing for the maintenance and control over a similar
duration of the coherence of an atom in a superposition
of two trapped states.

2 A microfabricated electrodynamic trap
for Rydberg atoms

The large coupling of Rydberg atoms to static or time-
varying fields presents us with numerous possible trapping
techniques. It has been proposed, for example, to use pow-
erful, far-detuned laser beams to create very tight traps
for Rydberg states. These traps exploit the ponderomotive
force [14] experienced by the atom due to the fast oscil-
lation of its valence electron in the laser field. It remains
hard however to fulfill all the criteria allowing for coherent
manipulation of Rydberg levels in any such trap. For in-
stance, one can see that the very large laser power required
by the ponderomotive trapping is hardly compatible with
the cryogenic environment necessary to avoid blackbody

radiation in the microwave domain [8] and the consequent
destabilization of the Rydberg levels.

Another possible solution is to use d.c. magnetic fields
and conventional atom-chip architectures. The magnetic
moment of a Rydberg level (principal quantum number n)
can be of the order of nµB, where µB is the Bohr mag-
neton. The same atom-chip wires could be used for the
trapping of ground and Rydberg state atoms. One possi-
ble problem is that the Rydberg state might be affected by
its interaction with still-trapped ground-state atoms in its
vicinity. Moreover, the transition frequency between dif-
ferent Rydberg states is strongly perturbed by the Zeeman
effect. We could not find a way to suppress the resulting
random dephasing, in contrast to that due to the Stark
effect, which can be partially compensated as explained
in Section 5.

In the following we therefore use time-varying electric
fields to trap the Rydberg atoms.

2.1 Circular Rydberg atoms in an electric field

We consider the case of Rydberg atoms in circular states.
These have a large principal quantum number n, of the
order of 50 in our discussion, along with maximal angu-
lar and magnetic quantum numbers (l = |m| = n − 1).
The atom therefore has both a large energy and a large
angular momentum. The classical analog of the electron’s
wavefunction is a Keplerian circular orbit around the nu-
cleus. To be concrete we will consider 87Rb atoms. To a
very good approximation one can neglect the fine struc-
ture corrections to the circular levels’ energies and assume
that they are equal to those of Hydrogen. We will label |g〉
the circular Rydberg state with principal quantum num-
ber n = 50 and |e〉 that with n = 51. In the presence of an
electric field the good quantum numbers are n, m and the
parabolic number n1 [15]. The circular state corresponds
to the case |m| = n − 1, n1 = 0 (it is simultaneously an
eigenfunction in the {n, l, m} and {n, n1, m} representa-
tions) and the normal to the plane of its circular orbit
aligns parallel to the electric field. Due to the Stark effect
the degeneracy of the manifold of levels of equal n but
differing n1 and m is lifted. Under these conditions the ra-
diative lifetime of the levels |g〉 and |e〉 is extremely long,
τsp ≈ 30 ms. For a given electric field amplitude E the
energy of each level can be calculated using either a direct
diagonalization of the Stark Hamiltonian (see Sect. 5.3)
or a perturbative approach. Using the latter method, to
second order, the energy E(E) of a given level |n, n1, m〉
is given by:

E(E) = E(0) + E(1) + E(2), (1)

E(0) = − 1
2n2

, (2)

E(1) = −3
2
(n − 2n1 − |m| − 1)nE, (3)

E(2) = − 1
16

[17n2 − 9m2 + 19

−3(n− 2n1 − |m| − 1)2]n4E2, (4)
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Fig. 1. Level spectrum in presence of an electric field for the
multiplicities n = 50, 51 and 52. Only the levels with the largest
angular momentum are presented (m ≥ n − 3). A π-polarized
microwave field will couple levels of equal m, for example those
of m = 49 separated from the others by a box in this figure.
A σ-polarized microwave field will, in contrast, couple levels of
m differing by ±1, for example levels |g〉 and |e〉.

where all quantities are expressed in atomic units (en-
ergy: Ea.u. = 4.360 × 10−18 J, electric field: Ea.u. =
514.2× 109 V/m). In the presence of a time-varying elec-
tric field, the normal to the plane of the orbit follows the
field direction so long as the characteristic frequency of
the change in electric field remains very small compared
to the transition frequency νStark = E(1)/h between the
neighbouring non-circular levels. In an electric field of
400 V/m, typical of the fields considered in this article,
this frequency is of the order of 400 MHz, much higher
than all the trapping frequencies found later, and there-
fore than the rate of change in angle of the field. We can
therefore in all the following consider the evolution in the
time-varying field to be adiabatic and that the atom re-
mains in the circular Rydberg state [16].

Figure 1 presents the energy levels in the presence of
an electric field for the principal quantum numbers n rel-
evant to our discussion. It is important to note that cir-
cular states, having no permanent mean electric dipole,
experience no linear Stark effect (E(1) = 0). They are,
however, much more highly polarizable than ground state
atoms and have an accordingly large quadratic Stark ef-
fect [Ei ≈ αiE

2 for i = (g, e), where αi is half the polar-
izability]. Its value, αg = −203.2 Hz/(V/m)2 for n = 50
and αe = −228.7 Hz/(V/m)2 for n = 51, is 9 orders of
magnitude larger than that of the ground state of hydro-
gen. Nonetheless, circular states are high-field seekers and
cannot therefore be trapped by any configuration of d.c.

electric fields, a maximum of the electric field modulus in
vacuum being forbidden by Maxwell’s equations.

2.2 Trapping

A similar situation is encountered in the case of charged
particles, such as ions. In that particular example,
Maxwell’s equations prevent us from obtaining an ex-
tremum of the electric potential in a region devoid of
charge. It is nevertheless possible to trap ions if one uses
a.c. electric potentials, as in the case of Paul traps [17].
Building on these ideas it has been shown by Peik [18]
that polarizable atoms can be trapped if one combines
a relatively strong, d.c. and homogeneous electric field
E1 = E1uz (where uz is a unit vector along the ver-
tical) and an inhomogeneous a.c. field E3(r, t) deriving
from a time-varying hexapolar potential. As a first step
we consider the case where E3 � E1. The field is therefore
almost homogeneous over the trapping region and small
departures from E1 are responsible for the confinement.
Let V1(r) and V3(r, t) be the potentials associated to E1

and E3(r, t) respectively. One can write these potentials
in the form:

V1(x, y, z) =
U1z

z0
, (5)

V3(x, y, z, t) =
U3(t)
2z3

0

(2z3 − 3zx2 − 3zy2), (6)

where the Ui are quantities homogeneous to electric po-
tentials and z0 is a length of the order of the electrode size.
If one considers a circular Rydberg atom following adia-
batically the electric field variations, its potential energy
in the quadratic Stark approximation is given by:

E = α|E1 + E3|2
= α(E2

1 + 2E1 ·E3 + E2
3). (7)

Assuming E3 � E1 and neglecting the constant terms in
the potential energy we arrive at:

E � 2αE1E3 · uz

� 2α
U1

z0

∂V3(x, y, z, t)
∂z

� α
3U1U3(t)

z4
0

(2z2 − x2 − y2). (8)

We see that we now have an expression for the potential
energy quadratic in x, y and z, as in conventional ion
traps. It is important to note that if we have trapping
along directions x and y (i.e. U1U3(t) > 0 for α < 0) then
we necessarily have antitrapping along direction z, and
vice versa. Moreover, if U3 varies sinusoidally [i.e. U3(t) =
U30 cos(ωt)] then the equation of motion along Ox can be
written:

mRb
d2x

dt2
− 6αU1U30

z4
0

cos(ωt)x = 0. (9)
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Equation (9) can be transformed into the well-known
Mathieu form:

d2x

dτ2
− 2qx cos(2τ)x = 0, (10)

where τ = ωt/2 et qx = 12αU1U30/mRbω
2z4

0 .
The equation of motion is of the same form along the

other directions with qy = qx and qz = −2qx. There exists
a stable solution, confined in space, if |qi| ≤ 0.907, i =
x, y, z.

In order to compensate the force of gravity, taken to
be along −z, it is also possible to add to V1 and V3 a d.c.
quadrupolar potential V2(r) = U2(x2 + y2 − 2z2)/z2

0 . If
U2 � U1, the same analysis as before, considering only
the terms in U1 and U2, leads to:

E � 2α
U1

z0

∂V2(x, y, z)
∂z

� −4α
U1U2

z3
0

z, (11)

compensating gravity if U2 = mgz3
0/4αU1.

2.3 Proposed geometries, calculation of potentials
and fields

It is of course possible to design a geometry of electrodes
which perfectly maps the desired hexapolar geometry [see
Fig. 2a]. It requires two rings and two end caps. How-
ever, being closed in all three dimensions, such a geome-
try is hardly compatible with efficient atom loading, nor
with the idea of building all the trapping components on
a microfabricated structure. We propose instead a design
(trap A) based on two chips facing each other [see Fig. 2b].
Each chip could be made by standard lithographic meth-
ods and consists of two electrodes: a disk, playing the role
of end cap, surrounded by a plane. The diameter of the
disks is 1 mm and the outer electrodes would extend to
y = ±1 cm and even further in x, the electrodes forming
part of a long waveguide (see Sect. 5.2). To ease the nu-
merical calculation of the potentials we cut the electrodes
off at ρ =

√
x2 + y2 = 2 mm and confirmed afterwards

that this had a negligible effect upon the potential within
the trapping region.

The voltage applied to each electrode is the sum of
3 terms:

– a static voltage ±U1 creating a homogeneous field E1

along Oz, as in a plane capacitor;
– a static voltage U2 on the outer ring of both chips cre-

ating a potential with a large quadrupolar component
of the same form as V2(r). This component, in con-
junction with E1 as seen above, will create a force on
the atom compensating gravity;

– a time-varying voltage U3(t) creating a potential with
a large hexapolar component of the same form as
V3(r, t). This component, in conjunction with E1 as
seen above, allows for trapping.

It is, however, important to note that the electric poten-
tial associated to U2 (resp. U3) is clearly not an ideal

Fig. 2. For all figures there is a cylindrical symmetry around
Oz and the electrodes are shaded according to the phase of
the oscillating potential U3. (a) Electrode geometry creating
an exact hexapolar potential. (b) Section of trap A in a ver-
tical xOz plane, with applied potentials. The diameter of the
inner electrode is 1 mm. The plate spacing, 1 mm, is appro-
priate for spontaneous emission inhibition. The analogy with
the geometry of (a) is conspicuous. (c) Geometry of trap B.
The lower plane is not drawn to scale, the inner disk electrode
having a diameter of 100 µm and the ring around it being of
width 100 µm. The plate spacing remains 1 mm.

quadrupole (resp. hexapole). The resulting electric fields
are therefore more complicated. As an illustration, if the
factor η of Figure 2b is set equal to 1, U3 will create a
non-zero electric field along Oz at the centre of the trap O.
This will create a time-varying electric field, and therefore
atomic energy, at trap centre, resulting in heating. A cor-
rect choice of η allows us to better approximate a perfectly
hexapolar potential, and cancel this electric field.

More specifically, our final goal is to be able to calcu-
late the electric field at any position inside the trap and
at any time. Moreover, it is important to assess edge ef-
fects as well as the effects of the finite gap between the
electrodes. We have therefore opted for a numerical ap-
proach. We numerically calculate the potential inside the
trap on a grid of points using the software SIMION [19].
In order to limit numerical errors in the calculation of the
gradient we then make a fit of the potential on the basis
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k\l 1 2 3 4 5 6 7

1 4.09 0 0 0 0 0 0
2 0 –3.12 0 –0.63 0 3.73 0

3 (η = 1) 2.60 0 5.48 0 –3.66 0 –5.75
3 (η = 4.49) 0 0 15.04 0 –10.05 0 –15.76

Table 1. Results of the fit of the potential coef-
ficients vkl for trap A (z0 = 1 mm). The first two
lines give values for the fit of applied voltages U1 and
U2 respectively, the third line for applied voltage U3

with η = 1. It is possible to cancel the electric field
created by U3 at the centre of the trap by setting
η = 4.49 (fourth line).

k\l 1 2 3 4 5 6 7

1 0.409 0 0 0 0 0 0
2 0.457 –0.220 0.037 0.010 –0.010 0.001 2×10−6

3 (η = 1) –0.369 0.002 0.250 –0.241 0.155 –0.075 –0.027
3 (η = 0.05) 0 0.001 0.131 –0.127 0.082 –0.039 –0.014

Table 2. Results of the fit of the potential
coefficients vkl for trap B (z0 = 100 µm).
The different lines have the same meaning
as in Table 1.

of the first seven spherical harmonics Y m
l (θ, φ), centred

on O. Due to the cylindrical symmetry around Oz only
the m = 0 terms are present. Thanks to the linearity of
Maxwell’s equations one can add separately the contribu-
tion of each voltage Uk (k = 1, 2, 3) and we therefore have,
neglecting the physically unimportant constant term:

VFit(r, θ, φ, t) =
7∑

l=1

3∑

k=1

vklUk(t)
(

r

z0

)l

Y 0
l (θ), (12)

where z0 is an arbitrary length, chosen to be character-
istic of the trap geometry, and set equal to 1 mm for
trap A. The parameters vkl only depend on the geome-
try of the electrodes and are determined from our fit on
the numerically calculated grid. Due to symmetries one
can set v1l = 0 for l ≥ 2, v2l = 0 for l odd and v3l = 0 for
l even. The results of the fits are presented in Table 1. The
relative difference between the results of SIMION and the
fit is smaller than 1% within a radius of 400 µm from O.

We have also designed another trap geometry (trap B)
which achieves tighter confinement and smaller atom-
electrode distances [see Fig. 2c]. Such a set-up is neces-
sary for atom-surface interaction studies. Trap B is de-
rived from trap A by bringing the ring of the top plane of
Figure 2b down onto the lower plane. The electrode size
is reduced by a factor of 10 (and z0 accordingly reduced
to 100 µm) while the distance between the two planes
remains unchanged at 1 mm. Numerical calculations with
SIMION show that there exists a saddle point for the elec-
tric field modulus at a point O, 120 µm above the lower
plane surface. It is possible to apply the same numerical
treatment to this trap as before and fit the electric po-
tential around O (here however we have fewer symmetries
and can consequently set fewer of the vkl equal to zero).
This procedure produces a fit correct to 0.1% within a
radius of 50 µm of O. The results are shown in Table 2.

2.4 Simulation of trajectories

The evolution of the atom in the time-varying electric
field being adiabatic (see Sect. 2.1) we can simply write
E(t) = E [E(t)]. From VFit, it is easy to derive a formula for

the electric field modulus E, and therefore for the poten-
tial energy of a trapped atom. It is then simple to derive an
expression for the force on the atom along each direction.

In the case of trap A, due to its symmetries, the poten-
tial energy considered as a power series in |r| has a small
number of terms that dominate. The first non-trivial term
is a quadrupolar term, exactly equivalent to (8):

EQuad = α
3
√

21
4π

U1U3(t)v11v22

z4
0

(2z2 − x2 − y2). (13)

If, once again, we have U3(t) = U30 cos(ωt) then for each
direction the associated Mathieu equation will have a
characteristic parameter qi (i = x, y, z) equal to:

qx = qy = α
3
√

21
π

U1U30v11v33

mRbω2z4
0

, (14)

qz = −2qx. (15)

The second non-trivial term is a term linear in z, exactly
equivalent to (11):

ELin = α

√
15
π

U1U2v11v22

z3
0

z, (16)

allowing us to calculate the value of U2 necessary to com-
pensate gravity.

The use of only these first two terms fits the exact po-
tential energy to better than 1% within 100 µm of O and
allows one to find solutions for the trajectories via anal-
ysis of the Mathieu equation. This treatment, however,
does not suffice for trap B due to its non-zero values of
v21 and v32. Therefore, to treat trap B, and to achieve a
more precise calculation of the trajectories, we retain a
full numerical approach:
– each trajectory is computed, using an adaptive

Runge-Kutta algorithm;
– the total time over which we calculate the trajectories

ranges from a few ms to several seconds according to
the application;

– a trajectory is considered trapped if the atom remains
within the sphere of validity of the numerical fit of
the potential (radius of 400 µm for trap A, 50 µm for
trap B). 99% of untrapped atoms leave this zone within
0.55 s;
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Fig. 3. (a) A typical trajectory of an atom in trap A, shown in
the xOz plane. The atom is initially at the origin of the trap
and has a velocity (12, 0, 12) mm/s. (b) x (solid line) and z
(dotted line) coordinates for the same trajectory as a function
of time.

– we use initial conditions for the velocity and position
of the trapped atom coherent with excitation from a
trapped cloud of rubidium atoms (trapping frequency
1 kHz along each direction) at thermal equilibrium
(temperature T0 = 300 nK) and with the loading
mechanism that we consider in Section 3.2. These cor-
respond to Gaussian distributions of widths 5.35 mm/s
and 0.27 µm for the velocity and position respectively.
To the initial velocity is added the single recoil velocity
vr = 6 mm/s along the direction Oy that would be re-
ceived on efficient adiabatic excitation to the Rydberg
state. This temperature and trap frequency correspond
to an atomic cloud close to condensation, or already
condensed (average phonon number nph ≈ 6). The ini-
tial conditions that we have taken remain valid how-
ever, as long as the number of atoms in the trap is
low enough for mean field interactions between ground-
state atoms to be neglected;

– for each trajectory we record periodically the atomic
position and velocity, as well as the value of the electric
field modulus and its direction.

In all cases we check in the shallow electrodynamic
trap that the trajectory extension, of a much greater size
than the initial, tightly confined ground-state cloud, is also
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Fig. 4. Trapping efficiency (trap A) as a function of fre-
quency ω. U1 =0.2 V, U2 = −3 mV, U30 = 0.056 V, T0 = 1 µK.

much larger that the typical de Broglie wavelength of the
atom (of the order of 0.50 µm). This justifies a classical
calculation of the motion.

2.5 Trap performance

We have studied the trapping characteristics for a wide
range of parameters, especially the voltage U1 which con-
trols the mean electric field experienced by the atoms,
the voltage U30 and the frequency ω of the a.c. field, the
last two together controlling the confinement. For all of
these parameters we find qualitatively the results pre-
dicted by the Mathieu equation. Bound trajectories are
found to be composed of two motions: a fast micromo-
tion, of frequency ω and of relatively small amplitude,
and a slower macromotion of larger amplitude and of fre-
quency ωx = ωy ≈ ωz/2, an order of magnitude slower
than ω (see Fig. 3). In the case of non-bound trajectories,
the amplitude of the macromotion usually increases slowly
until the atom is finally expelled from the region in which
VFit is valid.

The trapping efficiency as a function of the frequency ω
is obtained by simulating 100 trajectories and recording
the fraction of them remaining trapped after 1 s. The re-
sults for trap A are shown in Figure 4. No trapping is
possible below a threshold frequency ωth/2π. This is in
qualitative agreement with the prediction of the Mathieu
equation stability criteria |qz| < 0.907. For the parame-
ters of Figure 4 this would set a threshold frequency at
395 Hz, compared to the value of ωth/2π = 400 Hz found
in the simulations. Just above ωth the efficiency depends
essentially on the initial temperature T0 of the sample and
can be very close to 100% for comparatively cold atoms.
If one continues to increase ω one observes a slow decay of
the efficiency. This can be easily understood as due to the
increasing ‘averaging’ of the time-dependent electric field
seen by the atom. The Mathieu equation predicts that the
macromotion frequencies ωx, ωy and ωz decrease as 1/ω.
There will therefore rapidly come a point when ω is so
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Table 3. Trap A and trap B correspond to the geometries of Figures 2b and 2c respectively. Labels α and β for trap B correspond
to different voltage settings. For each trap, we give the values for U1, U2, U30 and the frequency ω/2π. The frequencies ωz/2π
and ωρ/2π are the typical longitudinal (along Oz) and transverse oscillation frequencies in the trap. The trap depth Td is defined
as the temperature for which half of the atoms remain trapped. 〈θ〉 is the mean angle between the local electric field E and uz,
averaged over 100 trajectories at temperature Td/2.

Type η U1 (V) U30 (V) U2 (mV) ω/2π (Hz) ωρ/2π (Hz) ωz/2π (Hz) Td (µK) 〈θ〉 (mrad)

Trap A 4.49 0.2 0.056 –3 430 64 175 180 9.38
Trap B-α 0.05 1.5 0.5 0 20700 1460 2910 1000 4.22
Trap B-β 0.05 0.2 0.14 –0.45 2860 207 414 35 3.57

much larger than ωx, ωy and ωz that the time-dependent
field E3(r, t) averages completely and the atom, seeing a
homogeneous field, is no longer trapped.

In the following, ω will be chosen slightly above ωth

where the trapping efficiency is largest. Although this does
not correspond to a situation where a clear cut separa-
tion of the micro- and macromotions exists, we can still
distinguish between the two. We present in Table 3 the
frequencies of the macromotion ωρ = ωx = ωy and ωz for
different geometries and sets of voltages. In order to es-
timate the depth of each trap we calculate the trapping
efficiency for different initial temperatures. We define Td

as the temperature above which more than 50% of the
atoms are lost after 1 s. For trap B, two values of U1 are
shown (0.2 and 1.5 V), corresponding to two different bias
electric field amplitudes. Comparison of the results clearly
show that the smaller the trap and the larger the bias
field the tighter the confinement. Trap depth can reach
as high as the mK with motion frequencies in the kHz
range. However, most of the following simulations have
been performed with a small voltage U1, necessary for
studies of coherent superpositions of |g〉 and |e〉, as we
shall see in Section 5. Even in these unfavourable con-
ditions for trapping, the depths attained are compatible
with typical cold-atom temperatures and oscillation fre-
quencies remain reasonable, around 100 Hz.

Small departures of the electric field direction from
uz in the trapping region, due to transverse components
of E2 and E3, will later prove critical in calculating the
efficiency of the spontaneous emission inhibition (Sect. 4)
and the rate of dephasing between |g〉 and |e〉 (Sect. 5).
We therefore note in Table 3 the mean angle 〈θ〉 between
the local electric field and uz experienced by an atom over
the course of its trajectory.

3 Loading of the trap, preparation
of a subPoissonian sample of Rydberg atoms

3.1 The dipole-blockade effect

For many quantum information processing experiments,
the deterministic preparation and storage of an individ-
ual qubit is a critical requirement. This has already been
achieved, for example, with trapped ions. In previous ex-
periments with circular Rydberg atoms [8], we expressly
set the rate of excitation extremely low in order to be

Fig. 5. Level diagram demonstrating the dipole-blockade
effect.

able to neglect two-atom events. This is, of course, at
the expense of very long data acquisition times. We pro-
pose here to deterministically load the trap with a single
Rydberg atom by using the dipole-blockade effect. This
phenomenon has been proposed as an efficient way to per-
form quantum gates between two Rydberg atoms [13] but
can also ensure the preparation of one and only one low
angular momentum Rydberg state by laser excitation of a
dense micron-sized cloud of ground-state atoms [20]. The
essential idea behind this phenomenon is that level shifts
due to the dipole-dipole interaction make the laser nonres-
onant for the excitation of more than one Rydberg atom.

In order to assess the effect of atom-atom interactions
we consider an ensemble of N cold ground-state atoms
(temperature in the µK range) in the presence of a laser
resonant with the transition between a low-lying state |b〉
and a given Rydberg state |r〉. Atomic motion can be ne-
glected during the laser excitation and hence each atom
position Ri is treated as fixed. Let us assume that the ini-
tial trap confines the atoms in a micron-sized region such
that |Rij | = |Ri − Rj | < 1 µm for any couple (i, j) of
atoms. We then switch on the laser light, of frequency ωL.

Let us consider for a moment only atoms 1 and 2.
Figure 5 shows the relevant levels for this simplified sit-
uation. We tune the laser frequency to be resonant on
the transition from the lower state |b1b2〉 to the singly ex-
cited state, where one of the atoms has been excited to
the Rydberg state |r〉. In the absence of interactions, this
laser would also be resonant with the transition towards
the state |r1r2〉 where both atoms 1 and 2 are excited into
the state |r〉. We must, however, take into account the cou-
pling of this level |r1r2〉 with other doubly excited states
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of different Rydberg levels, for example |r′1r′′2 〉, shifted in
energy from |r1r2〉 by δdd (see Fig. 5). This coupling, of
magnitude Wdd, will cause a shift ∆dd of the level |r1r2〉
which, if large enough, will make the excitation of the
doubly excited level nonresonant and therefore strongly
suppressed. We must therefore calculate ∆dd. First order
perturbation theory gives us:

∆dd =
W 2

dd

δdd
. (17)

δdd will be of the order of the separation of Rydberg levels,
a few GHz for n ∼ 50. A classical order of magnitude for
Wdd is given by:

hWdd =
n4e2a2

0

8πε0|R12|3 , (18)

where a0 is the Bohr radius. For a distance |R12| = 1 µm
and n = 50 one calculates Wdd = 3 GHz. We therefore
calculate a shift of the doubly excited level ∆dd ∼ 1 GHz.
This order of magnitude calculation is in agreement with
the result ∆dd = 100 MHz found by Saffmann and
Walker [20]. This shift is easily resolved using modern
lasers and hence excitation of multiple Rydberg atoms will
be out of resonance with the excitation laser. It is shown
in [20] that for the resonant excitation of the transition
|b〉 −→ |r〉 in a cloud of ground state atoms of diametre
5 µm using a laser of Rabi frequency 1 MHz one obtains
multiple- or non-excitation of |r〉 for less than 1 event in
104 (for a number of ground-state atoms of the order of
a few hundred, compatible with the assumption that we
can neglect interactions in the calculation of the initial
conditions).

3.2 Loading from a magnetic atom-chip trap

Atom-chip traps [7] can fulfill all the conditions required
by our proposal. They allow for very high densities of
ground-state atoms in trap volumes as small as a few
µm3 [21]. They can, by construction, store atoms close
to surfaces and the operation of a conveyor belt, ideal for
bringing atoms from a capture region into the Rydberg
trap, has been proven [22]. Finally, evaporative cooling
in such traps allows one to attain temperatures as low
as a few hundred nK [23]. The need for operation at
cryogenic temperatures, in order to get rid of blackbody
radiation which would rapidly destabilize the Rydberg
states (see Sect. 4), makes it impossible however to use
standard atom-chip designs with normal conductors. We
plan to use instead superconductors to create the mag-
netic fields. This would allow us to pass current without
Joule heating as long as one remains below the critical
current. In standard atom-chip experiments at room tem-
perature the current densities are typically of the order of
5×106 Acm−2 [24]. We have checked that it is possible to
reach similar current densities with our superconducting
wires. In the case of a superconducting niobium wire of
thickness 1 µm and width 10 µm, sputtered on a silicon

Fig. 6. Ideal geometry for spontaneous emission inhibition.

oxide substrate, we find Ic = 0.5 A, corresponding to a
current density of 5 × 106 Acm−2.

Thanks to our microfabricated design, it is simple to
integrate our Rydberg trap with the magnetic atom-chip
trap and also the electrodes necessary for the transfer of
the atom from a low angular momentum Rydberg state to
a circular state [25]. We have designed a multi-layer con-
figuration with the electrodes necessary for the Rydberg
trap placed on top of the wires of the magnetic atom
chip. The circularization is achieved using wires on the
magnetic atom-chip layer to create the necessary mag-
netic field along with the application of a r.f. voltage to
electrodes on the Rydberg trap layer. The Rydberg trap
electrodes will not significantly affect the magnetic field
created by the wires of the lower layer as long as a normal
conductor such as gold is used. Evaporative cooling in the
magnetic atom-chip trap can provide a few hundred atoms
in a micron-sized cloud at temperatures as low as a few
hundred nK [23], conditions ideal for the operation of the
dipole-blockade effect. The magnetic trap is then suddenly
switched off and the excitation towards a low angular mo-
mentum Rydberg state performed immediately. Carefully
designed laser excitation schemes result in the atom re-
ceiving only one optical photon recoil, just before the cir-
cularization process, itself lasting about 20 µs [8,25]. The
flexibility of magnetic atom chips will allow us to super-
impose the centre of the magnetic trap with that of the
Rydberg trap.

4 Making the atom long-lived by spontaneous
emission inhibition

4.1 Principles

The basic idea behind the inhibition of spontaneous emis-
sion is to place the atom inside a cavity containing no
mode into which the atom can emit its photon upon de-
cay [26]. For the sake of simplicity we first of all consider
the geometry of Figure 6 where a circular Rydberg atom
is placed between two infinite, perfectly conducting planes
separated by a distance L. This situation is relatively close
to that of Figure 2b. We now assume that there exists be-
tween the two planes a d.c. electric field Edir orthogonal to
the planes (and hence parallel to their normal uz). Obey-
ing the standard selection rules, a circular Rydberg state
of principal quantum number n possesses only a single
possible decay channel, this being towards the lower cir-
cular state n− 1 (for example |e〉 → |g〉). In the process it
emits a photon of polarization σ+ with respect to uz , of
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wavelength λsp (λsp � 6 mm for the decay of |g〉 and |e〉).
Due to its polarization, the electric field associated with
this photon is perpendicular to uz and hence parallel to
the planes. The maximum wavelength of any such mode
inside this cavity is 2L as the electric field must cancel at
the surface of each plane. Therefore, if λsp > 2L, there
exists no cavity mode at resonance with the spontaneous
emission transition and the atom cannot decay, remaining
in the circular state for an infinitely long time.

We now detail a more rigorous, semi-classical approach
to this phenomenon, as found in reference [26]. We calcu-
late the effect of the field radiated by the dipole upon it-
self, and hence the consequent energy shifts and lifetimes.
The electric field radiated by a dipole D = D exp(−iωt)ud

at position rd oscillating at frequency ω along unit vector
ud is given by:

Edip(r, t) =
Dω3

4πε0c3
F (cav)(r, rd, ω)e−iωt, (19)

where F (cav)(r, rd, ω) is the susceptibility of the field in-
side the cavity, characterizing the linear response of the
system to the dipole movement. This susceptibility can
be written in the form:

F (cav)(r, rd, ω) = F (0)(r, rd, ω) + F (r)(r, rd, ω). (20)

The field corresponding to F (0)(r, rd, ω) is the field radi-
ated by the dipole in free space and that corresponding to
F (r)(r, rd, ω) reflects the modification introduced by the
presence of the cavity and is easily understood as being
the field radiated by the images of the dipole in the sur-
faces of the cavity. When we calculate the interaction of
the dipole with the total field we will therefore have two
terms:

– a first representing the interaction of the dipole with
its own free space field. This term leads us to the cal-
culation of the natural lifetime of the dipole and the
Lamb shift of its frequency. This calculation however is
plagued by divergences. Their values must be derived
by a fully quantum treatment, and we simply insert
these results into our calculation;

– a second corresponding to the interaction of the dipole
with the field of its images. This leads to the modifi-
cation of the natural lifetime (that we search to calcu-
late) along with the accompanying frequency shift. Its
calculation, in contrast to the first, poses no problem.

This approach gives the following expression for the rate
of decay of the dipole (atom) inside the cavity [26]:

Γ = Γ0

(
1 +

3
2
Im

[
ud · F (r)(rd, rd, ω)

])
, (21)

the imaginary part of the susceptibility corresponding to
the component of the image field in quadrature with the
dipole oscillation and hence responsible for dissipation. We
present in Figure 7 the evolution of the ratio Γ/Γ0 as a
function of the distance L in two specific situations: D par-
allel to uz; D perpendicular to uz. In the latter, the case of

� � � �

�

�

�

�2L/λ

Γ
Γ0

Fig. 7. Spontaneous emission rate Γ , in units of Γ0, as a func-
tion of the cavity plane separation L. The dipole is either par-
allel to the mirrors (Γ‖, continuous line) or perpendicular to
them (Γ⊥, dashed line). Both are calculated for the case of
perfectly conducting mirrors.

σ emission in the presence of a quantization axis along uz ,
one observes a complete inhibition for L < λ/2. In the for-
mer, the case of π emission in the presence of the same
quantization axis along uz, the dipole couples to modes
obeying different boundary conditions and its emission is
exalted for small L values. In the case of a σ transition
in the presence of a quantization axis slightly tilted with
respect to uz we have components of D both parallel and
perpendicular to uz and consequently the possibility of
decay via both inhibited and exalted channels. Inhibition
has already been observed in the microwave domain [27]
as well as for optical transitions [28]. A value of less than
0.1 for Γ/Γ0 has been reported in the case of Rydberg
atoms. This would already increase the radiative lifetime
of circular states to a significant fraction of a second.

4.2 Limitations of the inhibition

The ideal case presented in Section 4.1 is, however, far
from the realistic geometries of Figures 2b and 2c, the im-
perfections of which we must now evaluate. As a first ex-
ample, the electrodes do not form perfect infinite mirrors.
It is possible to neglect the effect of their finite size if, as
will be the case, the transverse dimensions of the trap are
much larger than λsp. A more critical effect comes from the
residual absorption by the imperfect mirrors, dissipating
the energy radiated by the atom and limiting its lifetime.
This effect must therefore be included in the calculation
of the susceptibility F (r)(r, rd, ω). The dipole of an image
produced by a number of reflections in the mirrors NR is
therefore multiplied by a factor:

(ρeiχ)NR , (22)

where |ρ|2 is the reflection coefficient of the mirror and
χ accounts for the phase shift at each reflection. For trap-
ping electrodes made of ordinary conductors (such as gold)
ρ and χ are related to the skin depth δ by the following
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Fig. 8. (a) Spontaneous emission inhibition factor Γ‖/Γ0 as
a function of the skin depth δ. The conditions are the same as
in Figure 6 with L = 1 mm, λ = 6 mm and a dipole 120 µm
away from one mirror. (b) Γ‖/Γ0 as a function of the atom-
mirror separation for the same values of L and λ as (a) and
with δ = 30 nm, corresponding to the case of gold at 1 K.

expressions:

ρ � exp(−2πδ

λ
), (23)

χ � 2πδ

λ
, (24)

provided that, as is the case here, δ � λ [29]. Figure 8a
presents the inhibition factor Γ‖/Γ0 as a function of the
skin depth δ in the case of a dipole radiating at 50 GHz
(λ = 6 mm). The cavity spacing L is 1 mm and the dipole
120 µm away from one mirror as in trap B. One can see
that inhibition is still efficient (a factor of greater than
100) for skin depths of less than 100 nm. Operating, as
we must, under cryogenic conditions, we can therefore use
gold, for which δ = 30 nm at 1 K. For imperfect mirrors
there is another effect that must be considered. The inhi-
bition factor now depends upon the position of the atom
between the two planes. Figure 8b shows this effect. The
closer to the surfaces, the worse the inhibition. One might
fear that this would pose problems in trap B. However,
even in the case of a circular Rydberg atom in trap B,
120 µm away from gold trapping electrodes at 1 K, the
inhibition factor of 340 would imply a radiative lifetime of
10 s.

We must also consider the consequences of our quan-
tization axis, following adiabatically the electric field
E(r, t), being not always perfectly perpendicular to the
plane mirrors. A non-zero angle θ(r, t) between E(r, t) and
uz will be responsible for a small component D⊥ = D sin θ
of the dipole being orthogonal to the mirrors (and for a

reduced dipole D‖ = D cos θ parallel to the mirrors). It is
therefore possible for the atom to couple to modes pos-
sessing exalted decay. Taking into account only this decay
channel, the probability for remaining in the excited state
is therefore given by:

P = exp
(
−

∫

tr.

Γ⊥ sin2 θ [r(t), t] dt

)

= exp
(
−Γ0

∫

tr.

Γ⊥
Γ0

sin2 θ [r(t), t] dt

)
, (25)

where the integral is performed along the trajectory fol-
lowed by the atom.

As we have seen (Tab. 3), θ � 1 for the trajectories
considered and we can therefore approximate D‖ = D and
sin2 θ = θ2. From equation (25) one can deduce a corrected
inhibition factor in Γcorr./Γ0, related to the value of θ along
a trajectory:

Γcorr.

Γ0
=

Γ‖
Γ0

+
Γ⊥
Γ0

θ2, (26)

where:
θ2 =

1
ttr.

∫

tr.

θ2dt, (27)

is the average of the square of the angle θ over the total
duration of the trajectory, ttr.. For L = 1 mm, λ = 6 mm
and δ = 30 nm we find an exaltation factor Γ⊥/Γ0 of 4.5,
whatever the distance between the dipole and the mir-
rors. Under the conditions considered (Tab. 3), Γcorr./Γ0

remains greater than 150.
The final effect that must be considered in evaluating

the residual lifetime of a circular Rydberg atom in the trap
is excitation by blackbody photons in the modes of the
cavity. These can induce π-polarized transitions between
|g〉 (resp. |e〉) and the other states of the m = 49 (resp.
m = 50) multiplicity (for example |g〉 → |i〉, see Fig. 1).
The rate of this process is proportional to the mean photon
number nt at the relevant transition frequency times the
relaxation rate Γπ for each transition, the total rate ΓB.B.

being equal to the sum of all possible transitions ΓB.B.(k) =∑
k′ nt(kk′)Γπ(kk′). We calculate ΓB.B.(g) = 3.15 s−1 and

ΓB.B.(e) = 2.75 s−1, the effect of exaltation of π transitions
having been taken into account. If the trap is cooled down
to 1 K, one has nt = 0.1 and a corresponding radiative
lifetime of about 3 s, once again not a limiting factor.

5 Preserving atomic coherences over long
times

To this point, we have shown that it is possible to trap a
single atom in a circular Rydberg state over times in the
second range. It is, however, important to see if one can
manipulate and maintain its internal state with the same
precision. More precisely, if we hope to use this technique
in quantum information experiments or for high precision
spectroscopy, it is important to verify that one can prepare
an atom in a coherent superposition of states and probe
its phase at a later time. In the following we will focus on
the transition between the two circular states |e〉 and |g〉.
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Fig. 9. Energies of levels |g〉, |e〉 and |i〉 as a function of the
electric field. States |g〉 and |e〉 have a small, approximately
quadratic Stark effect, magnified in this figure by a factor 5
for the sake of clarity. Level |i〉 has a much larger, linear Stark
effect. The microwave dressing (vertical arrow) predominantly
mixes |g〉 and |i〉 and reduces the difference in Stark polariz-
ability between |e〉 and |g̃〉, the resulting dressed level.

5.1 Electric shifts as the main cause of dephasing

As we saw in Section 2.1, the Stark polarizabilities of levels
|e〉 and |g〉 are slightly different. Figure 9 shows the energy
levels as a function of the electric field amplitude. The
frequency νeg = (Ee −Eg)/h of the transition has a strong
dependence on the electric field:

δνeg = νeg(E) − νeg(0) = δαegE
2, (28)

with δαeg = −25.5 Hz/(V/m)2. If one considers the case
of an atom in trap A in the conditions of Table 3, prepared
from a cloud at 0.3 µK, it experiences over its trajectory
a mean electric field amplitude Ea = 400 V/m, with an
excursion of ∆E = ±1 V/m. The corresponding frequency
broadening:

∆νeg = 2δαegEa∆E, (29)

is of the order of 20 kHz. This broadening is inhomoge-
neous as it is different from one trajectory to the next and
could only be controlled by perfect control of the initial
conditions of the atomic motion. The dephasing time as-
sociated to this motional broadening is of the order of a
few tens of µs.

In addition to this dephasing, the trapping frequencies
(ωρ, ωz) for states |e〉 and |g〉 differ by about 10%. The
trajectories for the two states are therefore rapidly sep-
arated (‘Stern Gerlach’ effect). Coherence would be lost
when this separation exceeds the wave-packet coherence
length, of the order of the de Broglie wavelength (about
0.5 µm for the conditions considered).

5.2 Tailoring the atomic levels to cancel electric shifts

A similar situation is observed for ground-state atoms
in magnetic or optical dipole traps. The potential of
these traps is also, in general, level dependent. However,
well chosen trap laser wavelengths [30] or bias magnetic
fields [31,32] minimize the effect. To achieve the same end
in the Rydberg trap we propose to use a microwave field
dressing in order to tailor the atomic energies. A π-po-
larized microwave field, of frequency ω0, is fed inside the
trap. This field is compatible with the trap boundary con-
ditions. For the sake of clarity, and as alluded to earlier,
we consider that additional boundary conditions, far from
the trap center, support a propagating wave in a guided
mode: its amplitude, independent of z and x, is maximal
at the origin and varies sinusoidally with y, canceling at
y = ±1 cm.

One can easily understand the effect of the microwave
by the consideration of a simple two-level approximation
where the microwave only couples levels |g〉 and |i〉 (see
Fig. 1). The state |i〉 experiences a large, linear Stark
effect [1 MHz/(V/m), see Fig. 9]. We define Ω0 as the
classical Rabi frequency on this particular transition, de-
pendent on the applied microwave power. The field is
detuned by δ0 = ωgi(Ea) − ω0 > 0 to the red of the
|g〉/|i〉 transition, Stark shifted by the average field Ea.
As a result the ‘dressed’ level |g̃〉 acquires a fraction of
the Stark polarizability of |i〉 and the dependence of its
energy on electric field can be made parallel to that of
|e〉, at least in the neighbourhood of Ea. More precisely,
we can choose the values of the two independent param-
eters δ0 and Ω0 so as to cancel the linear and quadratic
terms in the expansion of the dressed state transition fre-
quency ωeg̃(E) around Ea. For Ea = 400 V/m, the result-
ing δ0 = 2π × 746.158 MHz and Ω0 = 2π × 228.442 MHz
have reasonable values. The remaining higher order terms
in the expansion of the transition frequency ωeg̃(E) are
smaller than 0.05 Hz over the complete field amplitude
range of ∆E = ±1 V/m around Ea. This would result in
dephasing times longer than 20 s.

We note here that this scheme would also compen-
sate for the problem of patch effects on the surface of the
electrodes if the field which they create remains relatively
small compared to the directing field amplitude Ea. This
effect is caused by the misalignment of crystal orientation
in adjacent crystals in the metal. Let us consider a sur-
face with voltage difference ∆V between adjacent crystals
of characteristic size a. An ensemble of such patches will
create at a distance d above the surface a field:

Epatch =
a∆V

d2
. (30)

Over a volume of dimension ∆r, this field has an inhomo-
geneity of the order of:

∆Epatch =
a∆V ∆r

d3
. (31)

Patch-effects for gold electrodes were measured at much
closer distances in reference [33] where they found
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Epatch � 104 V/m for d = 0.25 µm and a � 30 nm. Be-
ing conservative, we assume the patch size to be 100 nm.
Building on these figures we estimate the field to be
0.008 ± 0.0003 V/m for trap A and 0.15 ± 0.005 V/m for
trap B, the inhomogeneity being calculated over a volume
of dimension ∆r = 15 µm and 5 µm, the typical excursion
of atoms in traps A and B respectively. All of these values
remain much smaller than Ea and would hence be well
compensated for by our technique.

5.3 Assessment of performances

The simple explanation of Section 5.2 is, however, far from
describing the true physical reality:

– the value calculated for δ0 is not significantly smaller
than the energy difference between state |i〉 and state
|i′〉 (see Fig. 1), which is therefore also significantly
coupled to |g〉. Moreover the microwave field also cou-
ples state |e〉 to the n = 52 manifold. It is therefore
important to adopt a multilevel approach in order to
account for the coupling by the π-polarized dressing
microwave of all the levels of equal m (see Fig. 1);

– this coupling therefore mixes the level |g〉 with other
levels of the same m = 49 (as is its aim) and equally
|e〉 with levels of m = 50. It must not be forgotten,
however, that these levels have finite, potentially short,
lifetimes in the cavity. We can therefore now see a form
of spontaneous emission by |g̃〉 and |ẽ〉 in which they
absorb a photon from the dressing microwave mode
and immediately re-emit it into another mode of the
cavity. These spontaneous events would destroy any
coherence existing between |g̃〉 and |ẽ〉. We must there-
fore quantify the rate at which these events occur and
check that the corresponding lifetime is not limiting;

– the dressed level transition frequency ωeg̃ is dramati-
cally dependent on the microwave Rabi frequency, pre-
viously considered constant and equal to Ω0. But Ω
is actually time- and position-dependent due to the
spatial profile of the mode (nodes at y = ±1 cm, see
Sect. 5.2) and due to the variation of θ(r, t). The in-
stantaneous Rabi frequency experienced by an atom
is therefore given by Ω(r, t) = Ω0f(r) cos θ(r, t). This
variation of the Rabi frequency creates an inhomoge-
neous broadening which must be included in our final
calculation;

– the tilt θ also couples a fraction of the microwave power
to σ transitions within the Rydberg levels, with an
effective Rabi frequency Ωσ(r, t) ∝ Ω0f(r) sin θ(r, t),
significantly smaller than Ω. The large detuning δ0 pre-
vents us from having resonant one-photon transitions
between the levels |e〉 and |g〉 due to this coupling.
Nevertheless, there could exist a multiphoton transi-
tion coupling the circular states to adjacent manifolds.
A 1 Hz Rabi frequency would be sufficient to transfer
population from the circular state to this adjacent one,
and limit the coherence time between |e〉 and |g̃〉 to 1 s.
We must therefore check that no such resonance exists;

– to achieve the necessary precision in the position of
the levels |e〉, |g〉, |i〉 and |i′〉 we must go beyond the
quadratic Stark expansion of equation (1).

We will now address these points one by one, turning first
of all to the last. To achieve the precision necessary we
diagonalize the Stark Hamiltonian of the circular state and
the 4 manifolds of greater n above it, in the presence of an
electric field. The resulting energies were fitted by a 4th
order polynomial over electric fields from 0 to 1000 V/m
with an error less than 0.5 Hz. It was checked that adding
a 5th manifold above the circular state to the Hamiltonian
changed the resulting energies by less than 1 Hz.

In order to take account of the coupling of levels other
than |g〉 and |i〉 by the microwave field, we must carry out
a diagonalization of a Hamiltonian containing all relevant
couplings. The microwave field is fully defined by its classi-
cal Rabi frequency at trap centre Ω0 on the |g〉 → |i〉 tran-
sition and its detuning δ0. The angle θ(r, t) being small, we
consider firstly only the π-polarized component of the mi-
crowave field, coupling levels of equal m. We have adopted
a dressed level approach to this problem and therefore
consider the ladder of levels |n, n1, m, nπ〉 where the ad-
ditional quantum number nπ counts the number of pho-
tons in the microwave field. For the case m = 49, relevant
for level |g〉, the coupling between initial and final states
|ni, n1,i, 49, nπ + 1〉 and |nf , n1,f , 49, nπ〉 is given by:

Ω
nf ,n1,f
ni,n1,i (nπ) = Υ

nf ,n1,f
ni,n1,i

√
nπ + 1 (32)

where Υ
nf ,n1,f
ni,n1,i is the Rabi frequency on the considered

transition for nπ = 0, proportional to the dipole matrix
element Mnf ,n1,f

ni,n1,i . However, as the dressing microwave is a
classical field (and hence nπ � 1), one can assume

√
nπ ≈√

nπ + 1 ≈ constant. Therefore each coupling strength can
be normalized to Ω0 according to:

Ω
nf ,n1,f
ni,n1,i (nπ) = Ω0

Υ
nf ,n1,f
ni,n1,i

Υ 51,1
50,0

= Ω0
Mnf ,n1,f

ni,n1,i

M51,1
50,0

. (33)

We were therefore able to construct the matrix of a Hamil-
tonian at constant m including M multiplicities in n (i.e.
n = m + 1, ..., m + M), and 2N + 1 multiplicities in nπ

(i.e. nπ − N, ..., nπ, ..., nπ + N). For the initial level po-
sitions E(k; E) we use the quadratic Stark expansion of
equation (1) for all levels apart from |g〉, |e〉, |i〉 and |i′〉,
as explained above. After diagonalization of this Hamil-
tonian, we are left with a new ladder of levels, Ẽ(k; E).
These levels are slightly shifted in energy with respect
to the unperturbed states and it is of course this shift
that we hope to use in order to render Ẽ(g, nπ; E) and
Ẽ(e, nπ; E) parallel. This shift being small, and there be-
ing no resonant coupling due to the dressing field, we are
able to associate each of the dressed levels unambiguously
with one of the unperturbed levels. We label the state
arising from |n, n1, m, nπ〉 as ˜|n, n1, m, nπ〉 where the new
quantum numbers characterize the now mixed atom-field
state. We computed the change in energy of Ẽ(g, nπ; E)
and Ẽ(e, nπ; E) as one increases M or N by one, hence
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increasing the size of the Hamiltonian diagonalized. We
found this difference to decrease exponentially and fall
below the Hz level for M ≥ 6 and N ≥ 4. By a diagonal-
ization of the Hamiltonian with M = 6 and N = 4 we were
therefore able to calculate Ẽ(g, nπ; E) and Ẽ(e, nπ; E) to
the Hz level for a given electric field E, microwave power
(corresponding Rabi frequency Ω0) and detuning δ0. We
can therefore write:

Ek(E, Ω0, δ0) = Ẽ(k, nπ; E) − nπ�ω0, (34)

for the potential energy of a trapped atom in state k = g
or e, in the presence of the microwave dressing field.

From these energies one can determine the dressed
level transition frequency:

ωẽg̃(E, Ω0, δ0) = [Ee(E, Ω0, δ0) − Eg(E, Ω0, δ0)] /�, (35)

and analyse its dependence on the electric field. In the
neighbourhood of Ea we have:

ωẽg̃(E, Ω0, δ0) = ωẽg̃(Ea, Ω0, δ0)
+L(Ea, Ω0, δ0)(E − Ea)
+Q(Ea, Ω0, δ0)(E − Ea)2

+O((E − Ea)3), (36)

and it is the coefficients L(Ea, Ω0, δ0) and Q(Ea, Ω0, δ0)
that we hope to cancel, as we did under the simpler, two-
level treatment laid out in Section 5.2. Unfortunately, due
to the effect of the microwave field upon level |e〉 as well
as |g〉, we find that, while it is possible for any δ0 to find
an Ω0 such that L(Ea, Ω0, δ0) = 0, it remains nonethe-
less impossible to simultaneously cancel Q(Ea, Ω0, δ0). We
therefore content ourselves with canceling L(Ea, Ω0, δ0)
and bringing Q(Ea, Ω0, δ0) close to its minimum for the
reasonable parameter values Ω0 = 2π × 200.000 MHz and
δ0 = 2π × 555.907 MHz. The remaining frequency disper-
sion corresponding to the field excursion ∆E = 1 V/m is
of the order of 10 Hz.

Turning now to the second item on our list of imperfec-
tions in the simplistic treatment of Section 5.2, we must
analyse the effect of the variation of Ω(r, t) due to the
mode profile, the angle θ(r, t) or, indeed, simple technical
noise on the microwave amplifier. By analysing the vari-
ation of ωẽg̃(Ea, Ω0 + ∆Ω, δ0) with ∆Ω we were able to
determine that the consequent inhomogeneous broaden-
ing is less than 10 Hz for ∆Ω/Ω < 2 × 10−7. This sets
a tight condition on the power stability of the microwave
source for the dressing. Both the excursion of the atom
in the microwave field profile and the variation of θ(r, t)
introduce a ∆Ω smaller than this.

The rate of spontaneous cascades of the type |̃g, nπ〉 →
˜|k, nπ − 1〉 is found by calculating the dipole D(g̃k̃) be-

tween |̃g, nπ〉 and all the eigenstates |̃k, n′
π〉 of lower energy

and then summing the rates of spontaneous transitions,
proportional to the square of the dipole. The lifetimes
thus calculated converge rapidly with increasing M and
N towards 11.9 s for |g̃, ñπ〉 and 62.0 s for |ẽ, ñπ〉 (much
longer because of the greater detuning of the microwave

for transitions within the m = 50 multiplicity and the
consequently smaller contamination of |e〉 by other lev-
els). These lifetimes are much longer than those already
imposed by other limitations as presented in Section 4.2
and are therefore not an obstacle.

Finally, it was checked that there were no resonances
between the dressed circular states and adjacent levels
of different m due to the small σ-polarized component
of the microwave field. No transition was found towards
the multiplicities of ∆m = ± 1 with a detuning of less
than 100 MHz. These transitions consequently pose no
problem. All transitions at ∆m = ± 2, 3... have Rabi
frequencies � 1 Hz, these processes being of second or
higher order, passing necessarily by a virtual transition at
∆m = ± 1 which we have just seen to be hugely nonreso-
nant, and hence strongly suppressed.

5.4 Simulation of the coherence control

In order to estimate the coherence decay time T2 we simu-
lated a Ramsey interferometry experiment in the presence
of the dressing microwave. We simulate the trajectories of
an atom as in Section 2.4 with the state dependent poten-
tial energy given by:

Ek(r, t) = Ek(E(r, t), Ω0f(r) cos θ(r, t), δ0), (37)

where the Ek(E, Ω, δ) is a series expansion of the Ek to
fourth order in E and Ω around (Ea, Ω0, δ0). E(r, t) and
θ(r, t) are the electric field amplitude and tilt, and f(r)
accounts for the dressing microwave spatial mode (see
Sect. 5.2).

We assume that the atom undergoes two short mi-
crowave π/2 pulses, resonant on the |g̃〉/|ẽ〉 transition (fre-
quency ωẽg̃(Ea, Ω0, δ0)) at times ti and tf , separated by
a long delay T = tf − ti. For each state we follow the
state dependent trajectory. For atoms taken from a sam-
ple at 0.3 µK, the average separation between the two is
∼ 20 nm, much smaller than the de Broglie wavelength
λDB = 0.34 µm. The Stern Gerlach effect can therefore
be neglected. The dephasing between the two states is
then due only to the phase φ(T ) acquired by the |ẽ〉/|g̃〉
coherence along the trajectory r(t):

φ(T ) =
∫ tf

ti

[ Ee(E [r(t), t] , Ω0f [r(t)] cos θ [r(t), t] , δ0)

− Eg(E [r(t), t] , Ω0f [r(t)] cos θ [r(t), t] , δ0)
−ωẽg̃(Ea, Ω0, δ0) ] dt. (38)

Figure 10 represents this phase evolution for a given tra-
jectory over a 40 ms time interval. One can see that, over
times longer than the trap oscillation period, the evolution
is quite linear. On times scales of the order of the trap pe-
riod, φ(T ) proceeds by small steps of amplitude ∆φ which
occur when the atom is furthest from the origin. The fi-
nal fringe contrast for the whole set of trajectories can
be evaluated by C = (cosφ

2
+ sin φ

2
)1/2 (where the bar
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Fig. 10. Phase acquired
by an |ẽ〉/|g̃〉 coherence
over 40 ms. The trajectory
considered is in trap A, un-
der the conditions of Ta-
ble 3 and at T0 = 300 nK.

denotes an average over all trajectories). The time evo-
lution of C, shown in Figure 11a, provides an estimate
of T2 at around 25 ms. This is in qualitative agreement
with the predictions of Section 5.3. The evolution of the
contrast over long time is, however, nonexponential. Af-
ter a very rapid initial fall, C(T ) decays at a much slower
rate. We attribute this behaviour to the fraction of tra-
jectories which remain very close to the center of the trap
and whose phase drift can be much smaller than 1 over
significantly long times [see Fig. 11b].

As the phase acquired is almost perfectly linear with
time for all trapped trajectories, one can try to combat
the long term phase spreading using an echo technique
reminiscent of photon-echo techniques. Coherence preserv-
ing echoes have also been tested for trapped ground-state
atoms or ions [34–36]. In order to examine the efficiency
of this technique we simulate, at a time Tπ after the first
Ramsey pulse, an additional π-pulse on the |ẽ〉/|g̃〉 transi-
tion, exchanging the populations of the two states. Pulse
imperfections are taken into account for by considering,
instead of a perfect π-pulse, a pulse performing the fol-
lowing transformation:

|g̃〉 → cos
(

π + ϑ

2

)
|g̃〉 + sin

(
π + ϑ

2

)
|ẽ〉, (39)

|ẽ〉 → − sin
(

π + ϑ

2

)
|g̃〉 + cos

(
π + ϑ

2

)
|ẽ〉. (40)

where ϑ can be considered as the error in the angle of
rotation in the Bloch sphere, ϑ = 0 corresponding to the
ideal case. The ϑ for each trajectory is randomly chosen
from a Gaussian distribution, centered around 0, with a
dispersion of 0.1 Rad. In the ideal case where ϑ = 0 the
phase of the |ẽ〉/|g̃〉 coherence is multiplied by –1 upon
application of the π-pulse. During the subsequent evolu-
tion, the phase drift continues as before and thus returns
towards zero. At time T = 2Tπ, all phases are zero to
within an uncertainty of the order of the average phase
step amplitude ∆φ.

Figure 11a also presents the contrast C obtained under
these conditions as a function of T with a π-pulse applied
at Tπ = 0.5 s. We see it increase sharply up to 83% around
T = 2Tπ = 1 s. This very high contrast corresponds to an
effective T2 = 5.4 s. Even for atoms at T0 = 1 µK, we ob-
tain C(2Tπ) = 57.3%. Figure 11c shows that the technique
also works in trap B, producing an effective T2 of 2.6 s.
More complex echo sequences can be envisaged to improve
the final Ramsey fringe contrast. Ideal π-pulses repeated

Fig. 11. (a) Simulated Ramsey fringe contrast C as a func-
tion of the time interval T between two π/2 pulses in the case
of trap A. Conditions are as in Table 3 with T0 = 300 nK,
we average over 10000 trajectories. Grey line: contrast decay
without echo. The contrast undergoes a non-exponential de-
cay, falling to 50% in 24 ms, and to 13% in 0.5 s. Black line:
contrast decay and then revival after a π-pulse at Tπ = 0.5 s,
reaching 83% at T = 1 s. (b) The histogram of the phases ac-
cumulated at T = 0.5 s sheds light on this behaviour. A subset
of the trajectories (white bars in the histogram) accumulates
large phases and its contribution averages rapidly to zero. The
other trajectories (grey bars), remaining closer to the centre of
the trap, have a much slower phase drift and account for the
slow decay at long times. (c) Simulated Ramsey fringe con-
trast C(T ) in trap B under the conditions of Table 3 and with
T0 = 300 nK, averaged over 2500 trajectories. Here we have
applied a π-pulse at T = 420 ms and we see a revival of the
contrast reaching 72% at T = 840 ms.



J. Mozley et al.: Trapping and coherent manipulation of a Rydberg atom on a microfabricated device 57

at shorter time intervals can maintain the coherence over
time scales in the minute range, being only limited by the
radiative lifetime.

6 Conclusions and perspectives

We have shown that it is possible to integrate on a mi-
crochip the elements necessary to excite a single atom into
a circular Rydberg state, to trap it, and to perform coher-
ent manipulation of its internal states over seconds. The
wealth of possible electrode geometries makes it easy to
extend these results to the case of atomic waveguides or
arrays of traps. We have also obtained preliminary results
proving that it could be possible to integrate the detec-
tion of the Rydberg states on the chip itself. This relies
on the usual state dependent field ionization of the atom
followed by detection of the electron by a thin supercon-
ducting wire, such as those already used in fast photon
detectors [37]. Our proposal would offer a complete “tool-
box” to study and control a single quantum system in
an extremely versatile manner. It also forms a scalable
architecture for quantum information processing. The ex-
perimental realization of this project will require the adap-
tation of atom-chip techniques from room temperature to
the superconducting regime. We are currently developing
a cryogenic experiment able to achieve this, opening new
perspectives for atom-chip experiments.
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et Marie Curie and ENS, associated to CNRS (UMR 8552). We
acknowledge support of the European Community (QUEST
and QGates projects), of the Japan Science and Technology
corporation (ICORP Program: Quantum Entanglement), and
of the French Ministry of research (programme ACI).

References

1. T.D. Ladd, D. Maryenko, Y. Yamamoto, E. Abe, K.M.
Itoh, Phys. Rev. B 71, 014401 (2005)

2. D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier,
C. Urbina, D. Esteve, M. Devoret, Science 296, 886 (2002)

3. Y. Nakamura, Y.A. Pashkin, T. Yamamoto, J.S. Tsai,
Phys. Rev. Lett. 88, 047901 (2002)

4. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E.
Wieman, E.A. Cornell, Science 269, 198 (1995)

5. B. DeMarco, D.S. Jin, Science 285, 1703 (1999)
6. J. Denschlag, D. Cassetari, A. Chenet, S. Schneider,

J. Schmiedmayer, Appl. Phys. B 69, 291 (1999)
7. J. Reichel, W. Hänsel, T.W. Hänsch, Phys. Rev. Lett. 83,
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